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Summary

A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further
intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear
solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When
combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar
concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications,
the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at tem-
peratures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being
evaluated for this application.

To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator
in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal
predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for
analyzing and testing the materials for their ability to survive thermal shock and stress.

Introduction

Design operating temperatures for proposed solar thermal power and propulsion systems are at levels in excess
of 2000K. These high temperature systems have driven the requirement for the sun collection system to achieve
geometric solar concentration ratios (CR) to levels that cannot be achieved by a primary concentrator alone. The CR
is the ratio of the primary concentrator sun collection area to the entrance aperture area of the heat receiver. The
receiver aperture area significantly affects the amount of infrared radiation that escapes from the receiver cavity at
these high temperatures, thus for efficient high temperature applications, an optical system with a high concentration
ratio is a necessity. Large primary concentrators (rigid or inflatable) cannot focus to the accuracy required and there-
fore secondary nonimaging concentrators must be included in the system design.

A significant amount of research and development has  been completed on nonimaging reflective secondary
concentrators (ref. 1). The innovative refractive secondary concentrators (RSC) fabricated of solid high index of
refraction materials have been identified as the preferred option on achieving maximum CR (ref. 2). In addition,
they have the potential to be the most efficient since they take advantage of essentially loss-free total internal reflec-
tion (TIR) to concentrate the solar energy. It has also been reported that in order to achieve a high solar energy
throughput efficiency (>90 percent) a flux extractor must be incorporated and made integral to the refractive second-
ary. The flux extractor reduces the amount of back reflection and allows for flux tailoring via the adjustment of the
facet geometry. Unlike the reflective secondary, which discharges most of the energy at the front of the engine cav-
ity, the refractive secondary with flux extractor allows for uniform solar flux distribution further into the cavity,
avoiding hot spots.

Reference 3 presents the results of a feasibility study funded by NASA Glenn that describes the concentrator
and flux extractor design that is required to support a typical solar thermal propulsion application. This concept
(shown in fig. 1) was used as the basis to develop the thermal model described herein.

This paper presents a transient thermal model of a refractive secondary concentrator in a typical solar thermal
propulsion application. Although the model was developed for a specific solar propulsion application, the results
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generally apply to any high power, high temperature solar application using refractive secondary concentrators (such
as power generation or solar furnaces). Model predictions for both zirconia (ZrO2) and sapphire (Al2O3) prototypes
are presented. The same geometry and boundary conditions were used for the sapphire model and the zirconia
model. The geometry was optimized for zirconia. It should be noted that an RSC design optimized for sapphire
would have a slightly different geometry and boundary conditions than a design optimized for zirconia due to differ-
ences in the thermophysical and optical properties of the two materials. The predictions show how temperature
gradients are developed in the refractive secondary. The transient thermal performance information was used to
establish test criteria for thermal shock testing on candidate materials. The results of this testing are reported in
reference 4.

Description of RSC Thermal Model

A three-dimensional thermal model of the RSC and flux extractor was developed using the ANSYS™ finite
element analysis software, version 5.5.1SP. The thermal model also includes the engine receiver cavity, rhenium
foam heat exchanger, engine shell, and multilayer insulation (MLI). To simplify the model, the rhenium foam heat
exchanger and engine shell were lumped together into an equivalent thermal mass, as shown in figure 2. There is no
direct thermal link between the heat exchanger and engine shell with the concentrator/extractor due to the presence
of the engine receiver cavity. The equivalent thermal mass and the engine receiver cavity communicate thermally
via conduction.

Basically, solar energy from a primary concentrator (not shown) enters the RSC at a 22 degree entrance half
angle. The RSC is shaped such that the entering rays are limited to angles that maintain TIR in the concentrator and
the cylindrical end of the flux extractor. The solar energy exits the extractor at three faceted surfaces where it then
impinges upon the inside surface of the engine receiver cavity. As the receiver cavity gets hot, the IR radiation from
the cavity surface increases. This energy finds its way out of the cavity via transmission through the flux extractor
and RSC. At temperatures required for propulsion, the IR radiation becomes the dominant energy loss from the
receiver. A small amount of flux radiates back to the surface of the flux extractor where it is conducted through to
the RSC and radiates from the inlet surface.

ANSYS™ models black body and gray body radiation heat transfer; however, ANSYS™ currently does not
model radiation transmission through solids. Boundary conditions and an IR loss submodel were used to compensate
for this limitation. In general, the boundary conditions assumed by the model were selected to provide the worst case
(highest) crystal temperatures and (largest) temperature gradients. Descriptions of the boundary conditions and IR
loss submodel are provided below.

Engine shell 
Rhenium foam
heat exchanger

Engine receiver
cavity 

Exhaust

Incoming
solar flux
from primary
concentrator

Flux extractor
Propellant

Facet

Tip

Figure 1.—Cross-sectional view of typical solar thermal engine with integral refractive solar secondary.

Refractive secondary
concentrator (RSC)
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The material thermal properties of the various model components are shown in table I. The table shows the
thermal conductivity, density, specific heat, and emissivity of zirconia, sapphire, rhenium, and the multilayer insula-
tion. Little experimental data exists for zirconia and sapphire at temperatures above 1227 °C; therefore, extrapolated
values were used at the higher temperatures. The thermal model contained curves, as a function of temperature, of
the thermal conductivity and specific heat for zirconia, sapphire and rhenium. The model also contained curves of
emissivity but for only zirconia and sapphire. The emissivity curve for sapphire was assumed to be that of zirconia.
All other material properties were held constant throughout the temperature range. It should be noted that the mate-
rial properties of the MLI shown in the table are for an assumed mean temperature of 1093 °C.

A typical solar orbit of 60 min on-sun followed by a 30 min eclipse was assumed for the transient thermal
analysis. 2000 W of solar flux was assumed incident to the inlet face of the RSC. Allowing for reflection losses and
flux extractor efficiency, 1700 W was assumed to transmit through the crystal and project onto the inside surface of
the engine receiver cavity. Single crystal materials currently being considered for the RSC are theoretically transpar-
ent to the solar spectrum at all wavelengths up to 5 to 6 µm. The assumption that all available energy above 5 µm is
absorbed in the RSC resulted in ~8 W (out of 1700 W) being absorbed by the crystal. To account for this absorption,
a thermal flux boundary condition of 1175 W/m2 (8 W/6.81×10–3 m2) was placed on the inlet face of the RSC.

As previously mentioned, ANSYS currently does not model radiation transmission through solids. As a result,
an alternative tool was needed to model the radiation transmitted through the RSC and flux extractor. The solar flux
profile striking the engine cavity was calculated using Opticad™ as described by Wong in reference 5. Wong devel-
oped a ray-trace model of a zirconia RSC, flux extractor, and engine receiver cavity. The engine receiver cavity was
divided into 16 sections in the ray-trace model. The average solar flux for each section was calculated then used as
an internal surface thermal flux boundary condition for each corresponding section in the thermal model. The heat
flux boundary condition is summarized in figure 3 and table II.

Engine
cavity 

Multi-Layer Insulation (MLI)

Refractive Secondary
Concentrator (RSC)

Flux
extractor

KEY:
               Radiation

               Solar Flux

               Insulated
   (No Heat Transfer)

IR Loss

Cylinder

Lumped thermal mass
of outer engine shell
and rhenium foam
heat exchanger

Figure 2.—Schematic diagram of refractive secondary concentrator thermal model.

TABLE I.—MATERIAL PROPERTIES

Material Temperature,
°C

Thermal
cond.,

W/m°C

Density,
kg/m3

Specific
heat,

J/kg°C

Emissivity

Zirconia,
ZrO2

127
1727

1.6
a1.8

5,924 518
a616

0.86
0.07

Sapphire,
Al2O3

127
1727

32.4
a2.7

3,960 959
a1,299

Rhenium 127
1727

46.1
54.2

21,036 142
174

0.8

Multiolayer
Insulat.

127
1727

a0.045,b5.7 969 a172 0.1

aDenotes Extrapolated Values
bLow K Across MLI Sheets; Higher K Parallel to MLI Sheets
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An IR loss submodel was created to account for the infrared radiation loss that will be transmitted from the
engine receiver cavity, through the crystal, and back out to space. A short cylinder, as shown in figure 2, was placed
at the axial location along the flux extractor at the point of maximum flux extraction. The short cylinder communi-
cates with the engine receiver cavity via a radiation link. There are no other thermal links to the short cylinder. The
cylinder temperature is set to 23 °C and acts as a heat sink. The size of the short cylinder was adjusted until the cal-
culated IR loss was equivalent to the theoretical calculation developed by Buchele and documented in reference 3.
The theoretical calculation was later verified using a NEVADA™ ray-trace model of the IR loss mechanism.

Several radiation links exist in the model as shown in figure 2. The following sets of surfaces thermally commu-
nicate via radiation: (1) the flux extractor, engine receiver cavity, and MLI, (2) the inlet face of the secondary con-
centrator, MLI, and an external heat sink, and (3) the engine receiver cavity and the IR loss submodel cylinder.

Thermal Analysis

The objective of the thermal analysis was to determine the maximum temperatures, temperature gradients, and
heat flows for the RSC and flux extractor in a typical solar thermal propulsion application.

Figure 4 shows the temperature profile along the centerline of the flux extractor and RSC for sapphire and
zirconia. For both materials, the maximum temperature is expected to reach roughly 1800 °C at the tip of the flux
extractor. The melting points of sapphire and zirconia are ~2027 and 2715 °C, respectively. The maximum tempera-
ture gradient occurs across the transition between the RSC and flux extractor.

Figure 5 is a plot of the maximum temperature difference as a function of time. The temperature difference
was calculated between two nodes on the centerline axis of the concentrator/extractor separated by a distance of
~35 mm. The plot shows that the temperature difference is expected to be 250 °C higher for zirconia than for
sapphire.

Figures 6 to 10 present a series of thermal plots showing how a sapphire RSC is expected to heat-up over
2 orbits and one additional on-sun period. Figure 11 presents the average and maximum sapphire crystal tempera-
tures in a graphical format. As shown in figure 11, the thermal model predicts that it will take ~3 orbits to achieve
steady-state (within a repeatable band of) temperatures.

Table III shows heat flows and temperatures for both a sapphire and zirconia RSC after two orbits and one
additional on-sun period. The largest differences are shown in the shaded rows in the table. The primary difference
in temperature between the two materials is that the sapphire concentrator inlet face will operate almost 200 °C
hotter than the zirconia concentrator due to sapphire’s higher thermal conductivity. The conduction loss through
the sapphire material is expected to be roughly 60 W larger than that of zirconia.

TABLE II.—SOLAR FLUX BOUNDARY
CONDITION ON INSIDE SURFACE OF

ENGINE RECEIVER CAVITY
Cavity
section

Solar
energy,

W

Area of
section,

m2

Solar flux,
W/m2

1 0.00 1.392×10–3 0
2 0.00 1.392×10–3 0
3 3.81 1.392×10–3 2,737
4 5.24 1.392×10–3 3,764
5 11.20 1.392×10–3 8,046
6 28.36 1.392×10–3 20,374
7 59.82 1.392×10–3 42,974
8 105.69 1.392×10–3 75,927
9 123.21 1.392×10–3 88,513
10 192.32 1.392×10–3 138,161
11 229.61 1.392×10–3 164,950
12 253.56 1.392×10–3 182,155
13 207.09 1.392×10–3 148,772
14 137.74 1.392×10–3 98,951
15 87.10 1.392×10–3 62,572
16 247.25 2.929×10–3 84,414

16   15   14  13   12   11   10   9    8    7    6     5    4    3    2   1

Figure 3.—Solar flux boundary conditions on inside suface
   of engine cavity.
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Figure 4.—Temperature along the centerline of the
   flux extractor and RSC vs position.
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Figure 5.—Temperature difference across the concen-
   trator/extractor vs position.
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Figure 7.—Sapphire temperature after one orbit 
   (on-sun + eclipse).

Figure 6.—Sapphire temperature after one 60-minute 
   on-sun period.

Figure 8.—Sapphire temperatures after one orbit 
   and additional on-sun period.

Figure 9.—Sapphire temperatures after two orbit.
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Conclusion

The model provides temperature and heat flow estimates of the engine receiver cavity, flux extractor, concen-
trator, and MLI. The preliminary analysis, which is affected by gross assumptions for material properties at high
temperature (i.e. spectral absorption and thermal conductivity), indicates that large thermal gradients may develop
in the crystal. A high temperature gradient can be expected where the flux extractor passes through the MLI. The
temperature gradient is less severe for a sapphire secondary than for a zirconia secondary. Analysis indicates that
sapphire is a more desirable material than zirconia for high temperature solar thermal applications. However, more
data is required on the high temperature thermophysical properties of candidate optically clear single crystal materi-
als to improve the accuracy of the thermal model.

Figure 10.—Sapphire temperature after two orbit
   and one additional on-sun period.

TABLE III.— HEAT FLOWS AND TEMPERATURES
AFTER TWO ORBITS AND ONE  ADDITIONAL

ON-SUN PERIOD
Parameter Sapphire Zirconia
Radiation  loss from RSC inlet
surface and MLI, W 179 121
IR loss  from receiver, W 1444 1450
Average concentrator inlet surface
temperature, °C 406 211
Maximum concentrator inlet surface
temperature, °C 407 215
Average cavity temperature, °C 1803 1808
Maximum cavity temperature, °C 1845 1847
Average tip surface temperature, °C 1828 1830

Figure 11.—Sapphire maximum and average crystal temperatures over three orbits
    and one additional on-sun period.
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